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Abstract
We introduce a novel procedure to assess the goodness of fit in relational event models. Building on existing 
auxiliary variable approaches developed in network modelling, the procedure involves a comparison between 
statistics computed on observed relational event sequences and statistics calculated on event sequences 
simulated from the fitted model. We argue that the internal time structure of the relational mechanisms 
assumed to generate the observations under the model is an important aspect of the fit of a model to 
observed relational event sequences. We establish the empirical value of the proposed goodness of fit 
approach in an analysis of data that we collected on collaborative patient-referral relations among healthcare 
organizations. The illustrative case study that we develop reveals distinctive features of relational event 
models that have been ignored or overlooked in received empirical studies.
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1 Introduction
Data generated by social interaction often take the form of a tuple (i, j, t, w) recording information 
on the behaviour that unit i (the ‘sender’—or source of action) directs towards unit j (the 
‘receiver’—or target of action) at time t (Bianchi et al., 2024; Butts, 2008; Perry Wolfe, 2013). 
When available, information on qualities of the event connecting i and j may be summarized by 
the weight w (Brandes et al., 2009).

Behavioural units of interest may be represented by individuals (Stadtfeld & Block, 2017), 
groups of individuals (Niezink & Campana, 2023), corporate actors, such as formal organizations 
(), or even countries (Brandes et al., 2009). Examples of interactive behaviour defined at these vari
ous levels of analysis include conversations between individuals (Gibson, 2005), coordinated ac
tions among groups of individuals (Bright et al., 2023), resource exchange between organizations 
(Vu et al., 2017), and cooperation between countries (Stadtfeld et al., 2017).

Relational event models (REMs) have proven particularly useful in empirical situations involv
ing the analysis of time-stamped social interaction data (Butts, 2008; Butts et al., 2023). The main 
goals of REMs are to (i) determine which individual characteristics of i and j are more likely to 
facilitate (or impede) their interaction and (ii) identify configurations of past events in which i 
and j have been involved that make future interaction between them more (or less) likely to occur 
(). Cooperation and conflict in crowdsourced productions (Lerner & Lomi, 2020a), coordination 
among emergency response teams (Butts, 2008), interaction in online learning environments (Vu 
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et al., 2015), and animal social networks (Kings et al., 2023; Tranmer et al., 2015) are represen
tative examples of recent studies demonstrating the diversity of empirical interests that REMs are 
able to sustain.

Initially proposed by Butts (2008), and later extended and refined by Brandes et al. (2009), 
Perry and Wolfe (2013), and Stadtfeld (2012), REMs involve the specification of effects to capture 
various forms of time dependence among events. Forms of dependence typically encountered in 
empirical studies of social networks include reciprocity—the tendency of symmetric relations to 
be more likely to be observed between two actors (Dakin & Ryder, 2020)—and path- 
shortening—the tendency of actors connected to one or more common thirds to become directly 
connected (Bianconi et al., 2014; Newman & Park, 2003; Robins et al., 2009; Snijders & Steglich, 
2015).

More established statistical models for networks typically focus on the transition between mu
tually exclusive relational states such as, for example, ‘connected’ and ‘disconnected’. REMs de
part from this tradition of network modelling by taking as input information on sequences of 
observed time-ordered events, rather than the presence or absence of concurrent network ties en
coded into an adjacency matrix (Bianchi & Lomi, 2022; Butts, 2008, 2009; Butts et al., 2023). 
Consequently, REMs involve multiple forms of time dependence linking events in a sequence. 
Consider reciprocity, for example. For an event directed from behavioural unit i to j observed 
at time t to contribute to reciprocity, an event flowing in the opposite direction (from j to i) 
must have occurred at some time t− prior to t. The order in which these events happen and the 
time elapsing between them matter because the possibility of observing ‘reciprocity’ within any 
given time window depends on the speed of the underlying process of ‘reciprocation’, which is 
not directly observed (Bianchi et al., 2024).

This argument implies that the network-like effects typically included in empirical specifications 
of REMs have an internal temporal structure that makes it conceptually difficult to interpret the 
estimate of their associated parameters as conventional ‘effects’ in comparable event history mod
els. Continuing with our example, depending on the relative speed of reciprocation, reciprocity 
may be immediate, or it may become observable only with a delay. In the typical case, there 
will be a distribution of observed ‘time to reciprocity’—in other words, of waiting times before 
a symmetrizing event occurs. This is true more generally for all network-like effects computed 
on time-stamped data, such as transitive closure. In this case, the antecedent two-path configur
ation i→ h→ j must be already formed when the path-shortening event i→ j occurs. What mat
ters in these examples is that in the ‘event world’ of REMs, the analogues of network effects have 
an internal temporal structure determined by the sequential nature of relational event data 
(Bianchi et al., 2022).

While the fact that event times are random should not be surprising, its implications for how 
network ‘ties’ can be constructed by aggregating time-dependent sequences of relational events 
are less obvious. Typically, information on the internal time distribution of local configurations 
of events is lost when events are aggregated into network ties over conventional time periods 
(Bianchi & Lomi, 2022).

One of the primary motivations for developing a relational event framework for directed 
social interaction processes (Perry & Wolfe, 2013) has been the possibility of including 
information on the timing of relational events that may ‘lie beneath’ network ties (Butts & 
Marcum, 2017) to account for the sequential constraints that shape—and at the same time emerge 
from social interaction (Gibson, 2005). What REMs add to our ability to analyse data with com
plex (temporal) dependencies is the possibility of incorporating information on the timing of in
dividual relational events embedding individual behaviour in time-varying networks of 
dependence relations (Butts et al., 2023). The timing of events and their temporal ordering re
present the most distinctive elements in the specification and evaluation of REMs as models for 
data (). For this reason, it is surprising that available approaches to assessing the goodness of fit 
(GOF) of REMs do not explicitly consider the timing of the event as a dimension of interest.

Next to model-based assessments of fit, such as hypothesis testing, or comparison of likelihood- 
based information criteria, it may be helpful in data analysis to assess GOF by comparing the 
implications of the estimated model with the observed data without leaning on the model in the 
comparison. A parallel non-network data are that, for regression analysis, next to hypothesis 
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testing and assessment of R2, there is a helpful role for tests of normality. This is especially import
ant for network data, because of the strong statistical dependencies involved, and the lack of gen
eral principles for how to approximately tackle these dependencies.

Hunter et al. (2008) and Lospinoso and Snijders (2019) proposed and developed a general ap
proach for assessing the fit of network models where the estimated model is used to simulate hypo
thetical observations with the same structure as the observations. Auxiliary statistics are then 
computed for the simulated hypothetical and the observed data, and their degree of similarity is 
used to assess the fit of the model. Since network data are notoriously multifaceted (Robins 
et al., 2009), the auxiliary statistics chosen for a particular case can be very diverse, depending 
on the context and purposes of the study. It is especially helpful to use auxiliary statistics that 
are not directly used for estimating the parameters of the model, but provide an important com
plementary view of the network data. The reasoning behind this claim is that the ability of the 
model to fit dimensions of the data that are not explicitly represented in the empirical model spe
cification provides useful information on the GOF of the model.

In REMs, the internal time distribution of network mechanisms assumed to generate the obser
vations is of fundamental importance, but cannot be directly represented by a specific ‘effect’ in the 
empirical model specification. The approach based on the simulation of auxiliary variables from 
the model as originally proposed by Hunter et al. (2008) might provide a particularly stringent test 
of the GOF for REMs. This does not replace significance tests or the use of information criteria, 
but is an addition providing another perspective.

The main contribution of this paper is to extend this approach to REMs by providing a set of 
principled operational criteria that may be generally adopted in empirical research to assess the 
extent to which assumptions underlying fitted REMs are consistent with the underlying data gen
erating mechanisms.

In current empirical practice, assessing the GOF of REMs relies primarily on conventional 
information-based criteria such as the Akaike information criteria (AIC) or the Bayesian informa
tion criteria (BIC) (Butts, 2008; Lerner & Lomi, 2020a), which compare models with different 
specifications to a baseline model and therefore constitute relative fit measures useful for model 
comparison. Other approaches apply the traditional methods of GOF for event history models, 
such as martingale and Schoenfeld residuals (Perry & Wolfe, 2013; Vu et al., 2017).

Less frequently, prediction error (Stadtfeld & Block, 2017) and backward forecasting based on 
comparison of actual and simulated event sequences (Brandenberger, 2019) have been adopted to 
assess the GOF for REMs. None of these widely adopted procedures provides a test of the consist
ency of the model with the internal time structure of the mechanisms that are assumed to generate 
the observations.

The empirical value of the approach that we propose is tested in the context of healthcare—an 
empirical setting that illustrates vividly the importance of timing in social processes. Reactions of 
patients to treatment are highly sensitive to the timing of treatment itself (Gupta et al., 2012; 
Redelmeier & Bell, 2007). When the quality of care depends on the timing of treatment 
(Nallamothu et al., 2005), and the timing of treatment depends on the quality of coordination be
tween healthcare organizations and ensure continuity of care (Gittell et al., 2000), then the time 
structure of coordination mechanisms among healthcare providers is of crucial importance in in
terhospital patient referral and transfer (Amati et al., 2019). Similarly important is the ability of a 
model to reproduce with high fidelity the internal timing of the relational mechanisms it postu
lates. With few recent exceptions (Bianchi et al., 2022), empirical studies have not established 
the adequacy of a network model in terms of its ability to reproduce with accuracy the internal 
time structure of the theoretical mechanisms it postulates.

After this general introduction, the article is organized as follows. In the next section, we 
establish the minimal notation necessary to summarize REMs and understand their inferential log
ic. In Section 3, we define some of the main statistics typically included in empirical model spec
ifications. In Section 4, we adopt and adapt to REMs existing approaches developed for 
assessing the GOF of different statistical models for networks. In Section 5, we develop our illus
trative empirical case to demonstrate the empirical value of our approach. The article concludes 
with a discussion section about the promises and limitations of the method proposed for assessing 
the GOF of REMs.
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2 Relational event models
2.1 Notation
Let N = {1, . . . , n} be the set of nodes in a network. The triplet e = (i, j, t, w) denotes a relational 
event from node i ∈ N to node j ∈ N , with weight w, observed at time t ∈ T , T ⊆ R≥0.

In addition to information on relational event sequences, information on monadic and dyadic 
attributes of the units (or ‘nodes’) may also be available. Monadic attributes describe individual 
characteristics of the units. Dyadic attributes are characteristics of pairs of units and may be ex
pressed, for example, as functions of monadic attributes. We denote by v the n × p case by variable 
matrix of p monadic covariates. Each column of v is a variable mapping the set of units N to the set 
of attribute values V. We denote by w an n × n × q array of q dyadic covariates. Each matrix of the 
array represents a variable mapping the set of dyads N ×N to the set of attribute values W. 
Monadic and dyadic covariates can be constant over time or time-dependent. We denote time de
pendence by v(t) and z(t), respectively.

The collection of triplets (i, j, t), denoted by the set Ei = {(i, j, t) ∣ j ∈ N , j ≠ i, t ∈ T }, represents 
the sequence of relational events initiated by i over the time period T . We denote the relational 
event data by E = {Ei ∣ i ∈ N , v(t), z(t)}.

Henceforth, we shall follow the convention that upper-case letters represent random variables 
and lower-case letters denote their realizations.

2.2 A marked point process model for directed interaction
A number of models for relational events have been proposed during the last decade (Brandes 
et al., 2009; Butts, 2008; Lerner & Lomi, 2023; Perry & Wolfe, 2013; Stadtfeld & Block, 
2017; Vu et al., 2011). While the GOF approach that we propose applies, in principle, to any 
of these models, we focus our attention on the model developed by Vu et al. (2011, 2015). The 
advantage of this model for our current purposes is that model specification and comparison 
are greatly facilitated by its adoption in prior empirical studies of interhospital patient referral 
(Lomi et al., 2014; Vu et al., 2017). The second advantage of adopting this model is its explicit 
connection to the well-established theory of stochastic point processes (Cox & Isham, 1980).

The model assumes that the observed sequence of relational events is the outcome of a multivariate 
marked point process (MPP) composed of a simple point process describing the occurrence of events 
over time, and a mark, defining characteristics of the events. The simple point process models the oc
currence of the relational events initiated by i, while the mark distribution describes the receiver j.

Formally, the multivariate marked temporal point process is modelled as a multivariate count 
process denoted by N(t) = {Ni(t) ∣ i ∈ N }, with univariate component Ni(t) = |Ei(t)|—representing 
the number of events initiated by i up to time t.

The model makes three major assumptions. First, only one relational event can occur at any giv
en point in time (Lerner & Lomi, 2022). Second, censoring depends solely on the covariates in
cluded in the model (Blossfeld et al., 2014). Third, the univariate count processes Ni(t) are 
adapted for all i to the same history of the process denoted by Ht− with t− a time that is infinitesi
mally smaller than t (Vu et al., 2011).

Under these conditions, the MPP is defined by its conditional intensity function (Aalen et al., 
2008; Jacobsen, 2006) taking the form

λi(t, j ∣ Ht− ) = λi(t ∣ Ht− ) · pi(j ∣ Ht− ), (1) 

and representing the influence of the history of past events on the expected occurrence of future 
events.

The first factor λi(t ∣ Ht− ) in equation (1) is called ground intensity function. It models the simple 
point process and describes the rate at which a unit i ‘sends’ (or ‘emits’) a new event. The letter i in 
the subscript indicates that units can initiate events at a different rate, and thus the ground inten
sity function accounts for heterogeneity between units. The ground intensity function is specified 
as a Cox proportional hazard model:

λi(t ∣ Ht− ) = λ0(t) · exp(θ ′s(t, i)), (2) 
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with λ0(t) a positive-valued function called baseline rate, θ ′ the vector of parameters, and s(t, i) the 
vector of statistics. The statistics s(t, i) represent the endogenous and exogenous variables that 
might affect the rate. Endogenous variables depend on previous events, while exogenous variables 
on attributes of the unit i initiating the event.

The second term p(j ∣ Ht− ), called the mark distribution, probabilistically determines the re
ceiver of the relational event initiated by i, i.e. it models the mark of the event. The mark distribu
tion is multinomial

pi(j ∣ Ht− ) =
exp(β′s(t, i, j))

􏽐
h∈R j(t) exp(β′s(t, i, h))

, (3) 

with β′ the vector of parameters and s(t, i, j) the vector of statistics. The statistics are counts of 
event local configurations encoding the mechanisms that might determine the marks and may de
pend on previous events as well as on monadic and dyadic covariates. The term R j(t) is the risk set, 
i.e. the set of potential receivers of the event initiated by i. Under the assumption that events are 
non-reflexive, the risk set is defined as R j(t) = {j ∣ j ∈ N , j ≠ i}, otherwise R j(t) =N .

Examples of the statistics of the ground intensity and mark distribution are described in Tables 
S1.1 and S1.2, online supplementary material. Endogenous statistics are aggregations of previous 
events. It is often assumed that recent events are more relevant to the occurrence of the next event 
than events that happened far away in the past. The relevance of a past event is determined by a 
decay function. Different decay functions have been proposed. Butts (2009) defines weights that 
decay with the order of the events. Brandes et al. (2009) suggested using an exponential decay, 
while Vu et al. (2017b) a power-law decay depending on factors describing the rate of decay. 
Stadtfeld and Block (2017) adopted a time-window approach, whereby past events in a predefined 
time window of fixed width have weight 1, while events outside the window have a null weight. A 
mixture of these two approaches has been used to distinguish between the temporal relevance of 
short-term and long-term events (Lomi & Bianchi, 2024; Vu et al., 2015; Zappa & Vu, 2021). The 
choice between the different decay functions is often determined by a mix of empirical and theor
etical considerations (Bianchi & Lomi, 2022).

Different estimation methods may be adopted, depending on the specification of the baseline 
rate λ0(t). If a functional form for λ0(t) is assumed, then the parameters of the model may be esti
mated via maximum likelihood. If the function λ0(t) is left unspecified, and the model is semi- 
parametric (Vu et al., 2017), estimation via partial likelihood approach is possible.

Interpreting REM estimates is not straightforward, even though the rate function and the mark 
distribution are defined in terms of a Cox regression and a multinomial logit model, respectively. 
The standard interpretation of the parameters as risk ratios and odds ratios has—at best—a heur
istic value due to the structural correlation among the statistics. Thus, in the example that we pre
sent below, we focus on the significance and the sign of the coefficients. Significant and positive 
(negative) values of a parameter indicate that the probability of an event increases (decreases) 
with the value of the corresponding statistic, thereby providing evidence in favour of (against) 
the hypothesis that the corresponding mechanism contributed to generate the observations.

3 GOF for REMs
3.1 Related work
When is a REM an adequate model for data?

Extant research offers only an indirect answer to this question—an answer that typically 
depends on contingent empirical concerns. Our objective in this work is to propose a general 
analytical framework to evaluate the GOF of REMs that applies widely to a variety of practical 
research problems and underlying empirical model specifications (Butts, 2017; Stadtfeld et al., 
2017).

Earlier work typically adopted relative measures of GOF defined in terms of likelihood-based 
information criteria such as the AIC and the BIC (Butts & Marcum, 2017) to compare fitted 
(full) models to suitable null models. While useful for model comparison and selection, an ap
proach that relies on a single numerical indicator to assess the ability of a model accurately to 
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represent multifaceted network data generated multiple dependencies is unlikely to support a fully 
satisfactory model evaluation strategy (Hunter et al., 2008; Lospinoso & Snijders, 2019).

In an analysis of REMs fitted to email communication data, Perry and Wolfe (2013) rely on de
viance to assess model specification. In this study, the model GOF is evaluated in terms of the re
duction of residual deviance due to the sequential introduction of additional factors in the 
empirical specification. Perry and Wolfe (2013, p. 835) recognize that deviance may not be an 
ideal measure of GOF because it depends entirely on the estimated parameters, and they propose 
inspection of a normalized version of the martingale residuals as alternative GOF diagnostic 
(Therneau et al., 1990).

As discussed in Vu et al. (2017), when REMs are estimated via Cox proportional hazard, a com
mon GOF test is based on the analysis of the Schoenfeld residuals (Schoenfeld, 1982) to detect 
sources of a possible violation of the proportionality assumption (Grambsch & Therneau, 
1994). While not originally conceived as a way to assess a model’s GOF, this approach may assist 
in identifying specific sources of violation of proportionality assumptions.

Occasionally, the fit of REMs has been evaluated in terms of predictive accuracy. The probabil
ity of an event is computed conditional on the estimated model. If the predicted probability is lar
ger than a conventional threshold, then the model is assumed to predict the occurrence of the 
event. The proportion of events predicted to occur over the events that could have occurred is 
used as a measure of the fit of the model (Brandenberger, 2019; Butts et al., 2007; Stadtfeld & 
Block, 2017). Since model predictions are sensitive to the choice of threshold, which is—to 
some extent—arbitrary, the GOF is evaluated visually by looking at the curve obtained by plotting 
the proportion of correctly predicted events associated with different threshold values. Recent 
work suggests that predictive accuracy may not be the most useful measure to evaluate the 3 of 
REMs (Schecter & Quintane, 2021).

Assessing the GOF of REMs presents difficulties that are common in statistical models for net
work data adopted to estimate the conditional probability of either observing the presence of net
work ties (Snijders et al., 2006) or change in network ties (Block et al., 2018). For this reason, 
current best practices in evaluating network models may provide a useful starting point to develop 
valuable procedures to assess the GOF of REMs.

Assessing the GOF of statistical models for networks often relies on a model evaluation 
procedure originally introduced for exponential random graph models (Hunter et al., 2008; 
Robins et al., 2009), and later adapted and extended to stochastic actor-oriented models by 
Lospinoso and Snijders (2019). According to this procedure, a good model should be able to ex
plain (or ‘fit’) features of network data that have not been included in the empirical model speci
fication and are not the explicit target of the fit optimization that is carried out by the parameter 
estimation. The value of these features (called auxiliary variables) in the data is compared with 
their distribution implied by the fitted model. Auxiliary variables frequently considered of empir
ical interest or theoretical importance may include, for example, the out-degree and in-degree dis
tribution, the triad census, and the distribution of geodesic distances (Lospinoso & Snijders, 2019; 
Robins et al., 2005). Similar distributions can be computed for REMs as suggested by 
Brandenberger (2019).

3.2 Assessing the GOF of REMs
Similarly to other statistical models for networks, at the heart of REMs is the assumption that de
pendencies linking behavioural units are the primary force driving the formation of network struc
tures (Hunter et al., 2008; Pattison & Robins, 2002). Unlike other network models where 
dependencies are represented in terms of concurrent network ties, REMs represent dependencies 
as emerging directly from sequences of observed events ordered in time (Butts & Marcum, 2017). 
While timing plays no special role in available models for relational states, it is a defining element 
in models for relational events.

Networks ‘effects’ computed from sequences of time-stamped relational event data have an ex
plicit time extension. This is the case because it typically takes some time for an event sequence to 
unfold and give rise to patterns of dependence with theoretically interesting self-organizing 
properties.
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For example, some delay is likely to occur between one event flowing from i to j at time t, 
and the symmetrizing event flowing in the opposite direction at time t′ > t. When the 
difference between t and t′ is not fixed but varies across events, time to reciprocation will 
follow a distribution of waiting times where some events are reciprocated quickly, while some 
other events may be reciprocated after a longer time (Bianchi et al., 2022). Events that are not re
ciprocated within the observation period are considered censored observations (Bianchi et al., 
2022).

Similarly, it takes time for any two-path event sequence (i → h→ j) observed before time t to 
generate a path-shortening event (i → j) that produces triadic closure at some future time t′ > t. 
Like reciprocity, time to transitive closure is likely to give rise to a distribution of ‘time-to-closure’ 
spells whereby a path-shortening event may close an open two-path quickly and contribute to clus
tering of events in the shorter term, while some other two paths may remain open and operate only 
over a longer term. As it was the case for reciprocity, two-path event sequences that remain open at 
the end of the observation period may be considered censored observations. For any given obser
vation period of fixed length, the internal clock of network mechanisms such as reciprocity and 
transitivity reflects the relative speed at which these mechanisms operate to affect the occurrence 
of future events (Bianchi et al., 2022; Stadtfeld & Block, 2017).

The stylized examples we discussed suggest not only that the generating mechanisms incorpo
rated in REMs have internal time extension but also that they are likely to play themselves out 
over different time scales (Butts, 2009)—and at different speeds. Perhaps the most ambitious 
promise of REMs is to ‘reveal how sequences of interactions operate within short and longer 
time intervals’ so that REMs might ‘open new insights into the relative timing of social network 
mechanisms’ (Stadtfeld & Block, 2017, p. 319).

For this reason, a particularly appropriate and stringent test for the GOF of a REM—however 
specified—involves an assessment of the ability of the model to reproduce the internal timing of the 
dependence mechanisms it postulates. Models consistent with the internal time structure of the 
network mechanisms generating the observations capture an essential aspect of REMs that distin
guishes them from available statistical models for networks: the possibility of exploiting informa
tion produced by the exact timing of events.

In the section that follows, we develop this line of argument and link it to the auxiliary variable 
approach developed by Hunter et al. (2008) to assess the GOF of REMs. Clearly, the importance 
of capturing with accuracy the internal time structure of relational mechanisms may vary across 
empirical settings. Yet, understanding the differences in relative speed at which the various mech
anisms operate is an issue of general theoretical importance that network models have generally 
been unable to address (Butts, 2009). As we explain below, and as we discuss in greater detail 
in the illustrative part of the paper, we suggest that—other conditions being equal—a model 
able to reproduce these differences with high fidelity is a more desirable model for relational event 
data than a model that does not.

3.3 Auxiliary statistics
For the purpose of developing an auxiliary variable approach to the evaluation of the GOF for 
REMs, we restrict attention to three network mechanisms whose relevance has been documented 
extensively in empirical network research: reciprocation and path-shortening via transitive and 
cyclic closure (Robins et al., 2009). These mechanisms are known to play an essential role in em
pirical research on social (Newman & Park, 2003) and other kinds of networks (Milo et al., 2002; 
Newman et al., 2002; Robins et al., 2005). The same mechanisms also figure prominently in the
ories of, and empirical research on interorganizational relations—the specific context of the em
pirical illustration that we develop in this paper (Atouba & Shumate, 2010; Kitts et al., 2017; 
Laumann & Marsden, 1982; Lomi & Pattison, 2006).

The proposed auxiliary statistics describe the distribution of the internal time of a specific mech
anism. Define the ordered set of times where events i→ j occur by {t1, . . . , tM} = {t ∣ (i, j, t) ∈ Ei} 
and let t0 be the first time in T .

The first internal timing we consider is the time to reciprocation. The condition for reciprocation 
of an event i→ j is the existence of (at least) one previous event j→ i in the opposite direction. For 
the times tm ∈ {t1, . . . , tM} (with 1 ≤ m ≤ M), define Erec

ji (t−
m) = {(j, i, t′) ∈ Ej ∣ tm−1 < t′ < tm} as the 
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set of all earlier events j→ i that have not yet been reciprocated at tm. If this set is empty, event 
(i, j, tm) does not contribute to the computation of the auxiliary statistic. For tm where this set 
is non-empty, the time to reciprocation for tm is tm − min {t′ ∣ (j, i, t′) ∈ Erec

ji (t−
m)}.

The second internal timing of interest is the time to transitive closure. The condition for transitive 
closure of an event i→ j is the existence of (at least) one two-path1 i→ h→ j. For the times tm ∈ 
{t1, . . . , tM} (with 1 ≤ m ≤ M) and for every h ∈ N , h ≠ i, j, define Etr

ihj(t
−
m) = {(i, h, t′) ∈ 

Ei, (h, j, t′′) ∈ Ei ∣ tm−1 < t′, t′′ < tm} as the set of all two paths i→ h→ j that have not yet been 
close at tm. If this set is empty, event (i, j, tm) does not contribute to the computation of the auxiliary 
statistic. For tm where this set is non-empty, the time to transitive closure for tm is 
tm − min {t′ ∣ (i, h, t′) ∈ Etr

ihj(t
−
m), t′′ ∣ (h, j, t′′) ∈ Etr

ihj(t
−
m)}.

The condition for cyclic closure of an event i→ j is the existence of (at least) one two-path 
j→ h→ i. For the times tm ∈ {t1, . . . , tM} (with 1 ≤ m ≤ M) and for every h ∈ N , h ≠ i, j, define 
Ecy

jhi(t
−
m) = {(j, h, t′) ∈ Ej, (h, i, t′′) ∈ Eh ∣ tm−1 < t′, t′′ < tm} as the set of all two paths j→ h→ i 

that have not yet been close at tm. If this set is empty, event (i, j, tm) does not contribute to the com
putation of the auxiliary statistic. For tm where this set is non-empty, the time to cyclic closure for 
tm is tm − min {t′ ∣ (j, h, t′) ∈ Ecy

jhi(t
−
m), t′′ ∣ (h, i, t′′) ∈ Ecy

jhi(t
−
m)}.

The definition and computation of the network statistics hinge on several assumptions. By using 
the minimum we assume that the clock regulating the internal timing of a given mechanism starts 
ticking as soon as the antecedent (or predecessor) configuration emerges. Moreover, we do not ac
count for the recurrence of multiple conditions before the mechanism is completed, e.g. situations 
in which multiple events j→ i occurred before observing i→ j. Appendix S3, online 
supplementary material, provides the analogous definitions of the statistics for the cases in which 
it is crucial to account for repeated events or when the clock should start ticking from the time in 
which the most recent antecedent (or predecessor) configuration emerges.

The second assumption is that the clock that controls the time needed for an event to turn a pre
decessor configuration (for example, any two-path sequence) into its associated successor config
uration (for example, a triangular sequence) stops ticking as soon as the event occurs.2 When this 
happens, the antecedent configuration is removed from the sample, and the presence of subsequent 
events is ignored in the computation of the auxiliary statistics.

The last assumption concerns the definition of the sets Erec
ij (t−

m), Etr
ihj(t

−
m), and Ecy

jhi(t
−
m), which in

cludes all the events occurred up to time tm and have not (or not yet) components of more complex 
local configuration. Clearly, the composition of this set of events might vary depending on the con
text, case study, and type of relational events.

Table 1 illustrates the computation of the internal time for reciprocity, transitive closure, and 
cyclic closure, defined as the time elapsed between the formation of the condition and that of 
an event leading to a given configuration. The internal time for other network effects frequently 
included in empirical model specifications, for example, sending and receiving balance (Vu 
et al., 2017), may be defined similarly.

The definition of the internal time of the mechanisms is the component of the auxiliary statistics. 
Let ϕM(m) be the empirical distribution of the internal time of a specific mechanism. The auxiliary 
statistics for each mechanism are the deciles of the internal time empirical distribution computed 
using the generalized inverse of the empirical distribution function.

3.4 Implementation
Building on Hunter et al. (2008), we evaluate the fit of a REM by comparing the distributions of 
the auxiliary statistics computed on the observed data with the distributions of the auxiliary sta
tistics computed on sequences of events simulated from the estimated model. Given an estimated 
model, the sequence of events is generated from the MPP model described in Section 2.2 by con
ditioning on the times of the observed events and repeating those two steps for each event: 

1 Following the mathematical definition of transitivity, we assume that the order of the events leading to the two-path 
is irrelevant, i.e. we do not distinguish between the case in which i→ j is created before h→ j and the case in which h→ j 
is created before i→ j. However, statistics accounting for the order of events in the predecessor configuration can be com
puted if theoretically relevant or empirically important for understanding the phenomenon under investigation.

2 The notions of predecessor and successor configurations are adapted, loosely, from the mathematical theory of dis
crete dynamical systems (Wolfram, 1984).
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1. Given the time of the next event, determine the unit initiating the event with probability 
p = exp(θ̂ ′s(t, i))/

􏽐
Ri(t)exp(θ̂ ′s(t, i)) based on the ground intensity function in equation 

(2) and with θ̂ the estimate for θ. The set Ri(t) is the set of units at risk of initiating an event 
at time t.

2. Select the receiver of the event sampling from the set Rij(t) \ i using the multinomial probabil
ity pi(j, Ht− ) in equation (3) obtained by substituting β ′ with its estimate β̂ ′.

These two steps are repeated until one event is generated for each observed event time.
The distribution of the auxiliary statistics is computed from the observed data and the simulated 

sequences of events to assess the model fit. The deciles of the empirically observed distributions of 
the statistics are then compared.

Following established network modelling practice (Hunter et al., 2008), we adopt the approach 
of Lospinoso and Snijders (2019) and evaluate the fit graphically using violin plots and by means 
of the Mahalanobis distance-based Monte Carlo GOF test.

For each auxiliary statistic, the empirical distribution is represented using violin plots, one for 
each decile (Hintze & Nelson, 1998). If the model fits the data well, the observed deciles should not 
be extreme in the distribution of the auxiliary statistics generated under the estimated model. By 
‘not extreme’, we mean that the observed 10-quantiles should lie between the 5% and 95% per
centiles of the simulated values. In the following, we refer to this range as the 90% confidence 
interval. The GOF test uses the Mahalanobis distance to measure the divergence of the simulated 
deciles and those observed as the test statistic. Large values of the Mahalanobis distance indicate 
the extent to which simulated and observed deciles differ. A large value would suggest poor model 
fit. We refer interested readers to the paper of Lospinoso and Snijders (2019) for the technical 
details.

The graphical procedure and the Mahalanobis distance-based Monte Carlo GOF test require 
that the sequence of events can be generated from the estimated model.

4 Empirical illustration
4.1 Setting
The quality of health care services depends crucially on their timing. Because ‘The consequences of 
adverse events cannot always be offset by working harder on subsequent days’ (Redelmeier & Bell, 
2007, p.1164), outcomes of treatment are highly sensitive to the timing of treatment itself (Gupta 
et al., 2012). The same treatment administered at a different time point may be associated with 
widely different patient outcomes (Powers, 2020).

Table 1. Illustration and definition of the internal time of basic network mechanisms for relational event data

Reciprocation trec = tm − min {t′ ∣ (j, i, t′) ∈ Erec
ji (t−

m)}

Transitive closure ttr = tm − min {t′ ∣ (i, h, t′) ∈ Etr
ihj(t

−
m), t′′ ∣ (h, j, t′′) ∈ Etr

ihj(t
−
m)}

Cyclic closure tcy = tm − min {t′ ∣ (j, h, t′) ∈ Ecy
jhi(t

−
m), t′′ ∣ (h, i, t′′) ∈ Ecy

jhi(t
−
m)}
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If the quality of care depends on the timing of treatment (Seymour et al., 2017), and if the timing 
of treatment depends on the quality of coordination (Hoffer Gittell, 2002), then it should be ob
vious why the time structure of coordination mechanisms between health care organizations may 
be of paramount importance in the case of interhospital patient transfer (Amati et al., 2019; Berta 
et al., 2022; Zachrison et al., 2022).

Interorganizational collaboration and coordination among healthcare organizations is a major 
area of empirical application for network models (Iwashyna et al., 2009; Landon et al., 2012; 
Lomi & Pallotti, 2012; Mascia et al., 2017).

Network event models have provided valuable insights into the relational processes of collab
orative patient transfer and sharing relations. Interhospital patient transfer relations generate 
data with the canonical relational event structure: a sender hospital (i) transfers a patient at 
time t to a receiver hospital (j) in an attempt to provide a collaborative solution to a difficult clinical 
case. When multiple hospitals do the same, they give rise to a network of patient transfer events—a 
common feature of regional systems of healthcare (Lee et al., 2011). Questions asked in empirical 
studies typically concern the role of geographical distance (Mascia et al., 2017), ownership 
(Zachrison et al., 2022), competition (Lomi & Pallotti, 2012), and the effect quality, size, and 
cost differentials on interhospital patient transfer rates (Kellermann & Ackerman, 1988; Lomi 
et al., 2014).

The importance of relational coordination among health care organizations to ensure continu
ity of care is well recognized both in clinical practice (O’Malley & Cunningham, 2009), as well as 
health care management research (Hoffer Gittell, 2002). In turn, this general recognition has at
tracted increasing interest in the antecedents and consequences of interorganizational relations 
within the field of healthcare (Bolton et al., 2021).

4.2 Data
The data consist of the complete set of 3,778 interhospital patient transfer events observed be
tween all the 35 hospitals (public and private) located in the Italian region Abruzzo observed 
over a four-year period from 01.01.2005 to 31.12.2008. The sample contains only elective trans
fer events. Interhospital transfer events involving critically ill patients are excluded. The data were 
provided by the regional Agency of Public Health, which is responsible for collecting and man
aging discharge data to assess the performance of regional hospitals.

Additional information was collected over and above the time series of interhospital referral 
events. The administrative local units [henceforth local health unit (LHU)] to which a hospital be
longs facilitates the occurrence of events because the hospitals located in the same LHU refer to the 
same management; the geographical distance between hospitals in kilometres is a proxy for trans
portation costs and risks of transferring a patient; the number of beds and the mean occupancy 
rate describe the capacity of the hospitals and the use of available capacity. All the variables, 
but the distance among hospitals, are monadic and time-varying due to administrative changes.

Table 2 provides a summary of the covariates included in the model we estimate in the empirical 
part of the paper. A detailed description of the event data and the hospital-specific covariates can 
be found in Amati et al. (2019, 2021). The set of cases needed for estimation (Lerner & Lomi, 
2020b) includes the complete set of 128,452 non-events—i.e. all the possible interhospital patient 
transfer events that could have happened during the observation period but did not.

4.3 Model specification and estimation
To illustrate the GOF procedure, we specify two models with an identical ground intensity func
tion but a different mark distribution. The first model includes only basic dyadic and exogenous 
statistics. The second model accounts for more complex (triadic) dependencies. In the empirical 
part of the paper, we report estimates of a model based, in part, on prior empirical studies 
(Vu et al., 2017). The specification we adopt is kept at a relatively low level of complexity because 
we want to focus attention on the main analytical purpose of the illustration.

The ground intensity function in (2) is specified using the out-degree, out-intensity, and last 
sending statistics. The out-degree controls for the heterogeneous tendency of hospitals to initiate 
patient transfer events based on the number of their hospital partners. Being the average recency 
per partner, the out-intensity statistic accounts for both the number of hospital partners and the 
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recency of the events initiated by i. The last sending accounts for the tendency of hospitals to ini
tiate a transfer event when an event was recently initiated in the past.

For the mark distribution in (3), we included statistics that reflect standard micro-mechanisms 
that explain network dynamics. We start by describing the endogenous network mechanisms. The 
first mechanism is preferential attachment reflecting the tendency of hospitals to transfer patients 
to ‘popular’ receiver hospitals—hospitals chosen by many others as partners. Preferential attach
ment is represented by the in-degree and the in-intensity statistics. While the in-degree statistic 
counts the number of hospitals transferring patients to the receiving hospital, the in-intensity ac
counts for the average number of received transfer events for sending hospital.

The second and third mechanisms are dyadic. The last receiving accounts for the tendency of 
hospitals to receive a transfer event when an event was recently received in the past. Repetition 
represents relational inertia—the tendency of hospitals to transfer patients to the same hospitals 
selected as partners in the past. Reciprocation describes the preferential tendency of hospitals to 
select reciprocating partner hospitals as receivers.

The last two mechanisms relate to triadic closure—the tendency of hospitals sharing one or 
more alters to directly connect. Triadic closure may be the outcome of transitivity or tendencies 
towards cyclic closure (Lerner & Lomi, 2017). Transitive closure occurs when a two-path 
i→ h→ j is closed by the event i→ j, while cyclic closure concerns the two-path j→ h→ i.

Exogenous (control) covariates include: (i) joint membership in the same LHU to control for the 
preferential tendency of hospitals to refer patients to other hospitals within the same administra
tive area; (ii) capacity (number of beds) to control for the hospital size; and (iii) availability (occu
pancy rate) to control for the differential attractiveness of larger hospitals and hospitals with 
capacity available, respectively. Finally, we include geographical distance to control for the ten
dency of hospitals to transfer patients to nearby hospitals.

We refer readers to Table 3 for the mathematical definitions and graphical representations of the 
relevant statistics. For the analysis, we use the specification of the decay function f based on the 
power-law decay.

Table 4 reports the model estimates. All parameters, with the exception of those related to the 
occupancy rate, are significant at conventional levels. These results suggest that the occupancy rate 
of receiver hospitals does not affect interhospital patient flows significantly.

For the ground intensity function, the estimates of the out-degree and out-intensity parameters 
indicate that hospitals have a diverse propensity to initiate transfer events. The positive values in
dicate that hospitals initiating a higher number of patient transfer events are more likely to initiate 
new patient transfer events in the future. The negative value of the last sending parameter suggests 
that hospitals are more likely to initiate a new referral event if they recently initiated a past event.

For the mark distribution, the positive parameters associated with the in-degree and in-intensity 
statistics suggest that hospitals receiving events initiated by many other hospitals or receiving 
many transfer events are more likely to be the receiver of the next event. The estimates provide 
clear evidence of preferential attachment. The negative value of the parameter related to the recent 
receiving statistic indicates that referral events are more likely to flow to recently receiving hospi
tals. We also observe that there is evidence of repetition and reciprocation as indicated by the 

Table 2. Description of the covariates

Variable Description Type Range Mean s.d.

Local health unit (LHU) Membership of single hospitals to the 
different administrative units in which the 
region is partitioned

Nominal 1–6 – –

Distance (geo.dist) Geographical distance (kilometres) Continuous 2–146 69.0 28.8

Hospital size (n.beds) Total number of staffed beds Count [20–661] 155.4 138.6

Occupancy rate (occ.rate) Proportion of beds occupied Continuous [5–217]a 74.5 23.9

Note. aIt is not uncommon for some hospital to operate above installed capacity, particularly during periods in which 
cost-cutting measures, downsizing strategies, and restructuring plans are being implemented.
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corresponding positive parameters. Thus, patient transfer events to previous partners and recipro
cating past transfer events are more likely to occur in the future.

The estimates for the closure statistics indicate evidence against transitive closure and evidence 
of cyclic closure. Jointly interpreted, the two coefficients suggest the absence of a hierarchical or
dering in the interhospital network. Finally, the parameters of the exogenous statistics indicate 

Table 3. Statistics for the conditional intensity function

Statistic Representation Formula

Out-degree
􏽐

j≠i I{Nij(t−)>0}

Out-intensity

􏽐
j≠i

􏽐Nij (t
− )

e=1
f (te)

􏽐
j≠i

I{Nij (t
− )>0}

Recent sending t − max
e∈Ei

te

In-degree
􏽐

k≠j I{Nkj(t−)>0}

In-intensity

􏽐
k≠j

􏽐Nkj (t
− )

e=1 f (t, Te
kj

, α)
􏽐

k≠j
I{Nkj (t

− )>0}

Recent receiving t − max
e∈Ei

te

Repetition
􏽐Nij(t−)

e=1 f (te)

Reciprocation
􏽐Nij(t−)

e=1 f (t, Te
ji, α)

Transitive closure
􏽐

h≠i,j g(
􏽐Nih(t−)

e=1 f (te),
􏽐Nhj(t−)

e=1 f (te))

Cyclic closure
􏽐

h≠i,j g(
􏽐Nhi(t−)

e=1 f (te),
􏽐Njh(t−)

e=1 f (te))

Monadic attribute
v j(t)

Matching
I{vi(t)=v j(t)}

Dyadic attribute
zij(t)

Note. In the formulas, Nij(t−) is the number of relational events from unit i to unit j up to, but not including time t; f (te) is 
the decay function accounting for the temporal relevance of previous events te; v and z are monadic and dyadic covariates. 
The symbol I denotes the indicator function taking a value of 1 if the condition between brackets at the subscript is true; 
otherwise it is 0. The function g(·) denotes the geometric mean of the quantities between brackets.
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that transfer events between hospitals affiliated with the same LHU, directed to hospitals with a 
high capacity and located nearby, are more likely. These empirical results are generally consistent 
with those reported by extant research on interhospital patient transfer (Lomi et al., 2014; 
Stadtfeld et al., 2016; Vu et al., 2017; Zachrison et al., 2022).

4.4 Assessing model fit
We evaluated the fit of Model 1 and Model 2 in Table 4 using the procedure described in Section 3. 
In the current work, we chose to illustrate the method using the time elapsed since the first occur
rence of the conditioning event because the number of repeated events before observing recipro
cation or closure is small (mean 5 and median 4 for transitive closure and mean 4, median 3 for 
reciprocity). For each estimated model, we simulated sequences of relational events following 
the approach described in Section 3.4. We calculated the auxiliary statistics for the observed 
and generated sequence of events and computed the time distribution to reciprocity, transitive 
closure, and cyclic closure statistics.

Figure 1 reports the observed density distribution of the auxiliary statistics (solid line) and that 
obtained by pooling the simulated distributions for Model 1 (dotted line) and Model 2 (dashed 
line), respectively. The support of the density distributions has been limited to the third quantile 
of the observed distribution for visualization purposes. The same plots for the entire support 
and the descriptive statistics of the distributions are reported in Section S2, online 
supplementary material. Comparison between the models indicates that the distributions gener
ated from Model 1 are characterized by larger deviations from the observed ones due to higher 
variation and heavier right tails. On the contrary, the distributions from Model 2 are closer to 
the observed ones.

We use the deciles (or the 10-quantiles) and the Mahalanobis distance-based Monte Carlo GOF 
to compare the simulated and empirical distributions. Figures 2 and 3 report the violin plots of the 
deciles of the distributions of the auxiliary statistics for 1,000 simulated sequences of transfer 
events from Model 1 and Model 2, respectively. In each graph, the x-axis reports the order of 
the decile, while the y-axis is the standardized value of the quantile. The values are standardized 

Table 4. Model estimation for the patient transfer events observed over the period 01.01.2005–31.12.2008

Model 1 Model 2

Est. s.e. Sig. Est. s.e. Sig.

Ground intensity function

Out-degree 0.613 0.021 ∗∗∗ 0.613 0.021 ∗∗∗

Out-intensity 0.421 0.012 ∗∗∗ 0.421 0.012 ∗∗∗

Last sending −1.233 0.133 ∗∗∗ −1.233 0.133 ∗∗∗

Mark distribution

In-degree 0.087 0.043 ∗ 0.087 0.046

In-intensity 0.061 0.025 ∗ 0.098 0.0003 ∗∗∗

Last receiving −3.029 0.231 ∗∗∗ −2.930 0.053 ∗∗∗

Repetition 0.247 0.011 ∗∗∗ 0.249 0.012 ∗∗∗

Reciprocation 0.122 0.017 ∗∗∗ 0.112 0.015 ∗∗∗

Transitive closure −0.069 0.024 ∗∗

Cyclic closure 0.166 0.035 ∗∗∗

Local health unit (LHU) match 2.118 0.765 ∗∗∗ 0.749 0.0.024 ∗∗∗

Number of beds 1.273 0.060 ∗∗∗ 1.298 0.061 ∗∗∗

Occupancy rate 0.054 0.046 0.073 0.047

Geographical distance −0.731 0.037 ∗∗∗ −0.727 0.038 ∗∗∗

Note. ∗p-value < 0.05, ∗∗p-value < 0.01, ∗∗∗p-value < 0.001.
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Figure 1. Density distribution of the internal time for reciprocation (a), transitive (b), and cyclic closure (c) for the 
patient transfer data and the simulated sequence of events from Model 1 and Model 2. The support of the 
distributions is limited to the third quartile for visualization purposes.
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Figure 2. Goodness of fit (GOF) for Model 1 including only dyadic statistics. The violin plots refer to the internal time 
for reciprocation (a), transitive (b), and cyclic closure (c). Dashed lines are the 90% confidence interval for the deciles. 
The solid line and dots denote the observed deciles. The p-values of the Mahalanobis distance-based Monte Carlo 
GOF test are lower than 0.01 for all the auxiliary statistics.
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using the mean and standard deviations of the simulated deciles so that the violin plots are on a 
common scale. Each violin plot depicts the box plots and the distribution (line around the box 
plot) of the deciles for the simulated sequence of events, the corresponding observed count 
(dots), and the 90% confidence intervals (dashed line). The model fits the data well when the solid 
line falls within the dashed lines.

Figure 2 indicates that Model 1 is not far from reproducing the distribution of the time to recip
rocation, but dramatically fails to capture the time to transitive and cyclic closure. While the ob
served values of the deciles for the time to reciprocation are quite close to the limits of the 90% 
confidence interval, those for the transitive and cyclic closure are far off. This indicates that 
Model 1 does not have a good fit because it produces estimates that are inconsistent with the in
ternal time distribution of the data generating mechanisms. As a confirmation of this, the 
Mahalanobis distance-based Monte Carlo GOF returns p-values lower than 0.01 for all the aux
iliary statistics, suggesting that the simulated time distributions do not resemble the observed ones. 
In particular, the simulated distributions have larger deciles than those observed, thereby implying 
that the simulated distributions have a heavier tail than the observed distribution as depicted in 
Figure 1.

When the statistics for cyclic closure and transitive closure are included in the model (Model 2), 
the distributions of the time to reciprocation, transitive, and cyclic closure are well reproduced 
(Figure 3). The observed deciles lie in the 90% confidence interval, and the average of the simu
lated deciles is close to the corresponding empirical values. This suggests that Model 2 has a 
good fit for the selected auxiliary variables. The Mahalanobis distance-based Monte Carlo 
GOF tests return p-values larger than 0.05 for all the auxiliary statistics, supporting the statement 
that the simulated time distributions resemble the observed one.

We conclude this section by observing that the specification of Models 1 and 2 relates to the 
mark distribution rather than the ground intensity function that governs the timing of the effects. 
This suggests that out-degree and out-intensity effects provide sufficient information to explain the 
initiation of transfer events. At the same time, more than dyadic statistics are needed to explain the 
choice of receiving partner hospital.
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Figure 3. Goodness of fit (GOF) for Model 2 including the statistics for transitive and cyclic closure. The violin plots 
refer to the internal time for reciprocation (a), transitive (b), and cyclic closure (c). Dashed lines are the 90% 
confidence interval for the deciles. The solid line and dots denote the observed deciles. The p-values of the 
Mahalanobis distance-based Monte Carlo GOF test are 0.124 for reciprocation, 0.276 for transitive closure, 0.194 for 
cyclic closure.
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5 Discussion and conclusions
When does a REM provide an adequate representation of data produced by continuously observed 
social interaction? Addressing this question provided the main motivation for this study.

Clearly, many answers are possible, depending, among other things, on the aspects of the model 
and the data that are considered most empirically interesting or theoretically relevant in any par
ticular circumstance. We focused on developing a general procedure to evaluate the GOF for 
REMs around what is typically considered their most distinctive feature, namely their ability to 
incorporate information on the timing of the observations.

The auxiliary variable approach to the GOF of network models is now both well established 
(Hunter et al., 2008) as well as broadly adopted (Lospinoso & Snijders, 2019). Yet, we are not 
aware of studies that have adapted this approach to examine the ability of REMs to reproduce 
the internal time structure of the mechanisms that are assumed to generate the observations.

The main motivation for developing this perspective is grounded in the factual observation that 
effects in REMs have an internal time extension determined by the sequential ordering of the 
events that are actually observed (Bianchi et al., 2022).

The approach to the GOF for REMs proposed in this paper takes the distinctiveness of REMs 
into account and distinguishes itself from likelihood-based methods (AIC, BIC) and prediction- 
based methods generally adopted in extant empirical research.

Methods in the former class (likelihood-based) typically involve model comparison with the ob
jective of establishing the ‘best’ model relative to the other, and are most suited for model selection 
rather than global GOF. Unlike likelihood-based methods, the objective of the approach based on 
auxiliary statistics is not to provide a comparative evaluation of models within a given class of 
models, but to assess the GOF of the model by comparing its implications directly with the 
data. Methods in the latter class (prediction-based) evaluate the fit using the model’s predictive ac
curacy and address questions about how well the model performs at predicting events. Unlike 
methods based on prediction accuracy, according to the auxiliary statistics approach that we 
have proposed, a model has a good fit if it can reproduce the internal time structure of the relation
al mechanisms it postulates. For this reason, we think that our methodological proposal may be 
better grounded in a more theoretical understanding of social networks and social relations as 
processes situated in time and space (Abbott, 2001; Bearman et al., 1999; Gibson, 2005; Kitts 
et al., 2017; Mische & White, 1998; Moody, 2002).

We believe that representing with accuracy the internal time structure of relational processes is 
at least as important as predicting with accuracy the next event (Brandenberger, 2019) or the num
ber of events that happened relative to those that could have happened but did not (Butts et al., 
2007; Stadtfeld & Block, 2017). According to the argument we have developed in this paper, a 
model inconsistent with the internal timing structure of the relational mechanisms that it postu
lates cannot be considered a satisfactory model for relational event data.

We have tested the practical value of our methodological argument in the context of data on 
collaborative care among hospitals—an empirical setting where the timing of events is generally 
considered of particular relevance. We have shown that the ability of the model to reproduce 
the internal time structure of the effects of theoretical interest is sensitive to changes in empirical 
model specification. In models strictly defined in terms of dyadic dependence, parameter estimates 
do not produce a consistent representation of the timing of observed event sequences. Full models 
incorporating basic patterns of extra-dyadic dependence present in the data can reproduce with 
significantly higher fidelity the internal time structure of the network mechanisms assumed to 
have generated the observed data.

The identification of the auxiliary variables was driven by a combination of empirical 
(sample-specific) and theoretical (sample-independent) considerations. We focused on mecha
nisms of transitive and cyclic closure because prior studies instruct us that these forms of extra- 
dyadic dependence are present in the specific empirical setting we have examined (Amati et al., 
2019; Lomi et al., 2014; Zachrison et al., 2022) and in interorganizational networks more gener
ally (Lomi & Pattison, 2006).

As we expect to be typical in empirical studies, the selection of the auxiliary variables in the ex
ample we have presented comes from a combination of knowledge about extant empirical results 
(Kitts et al., 2017) and general indications coming from theories of interorganizational relations 
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(Powell et al., 2005). Forms of triadic closure play an important role in the analysis of network 
data more generally (Robins et al., 2009; Snijders et al., 2006). For this reason, we expect that 
our proposed analytical strategy will apply beyond the boundaries of our illustrative case study. 
Additional auxiliary statistics, such as, for example, the frequency of repetition and the number 
of non-reciprocated events may be considered important in specific applications, and nothing pre
vents their future development and implementation.

From a practical point of view, however, the choice of the auxiliary variables is necessarily context- 
dependent, at least to some extent. Different auxiliary variables may be appropriate in different 
empirical settings. For example, in the analysis of e-mail data where some events are simultaneous 
(Perry & Wolfe, 2013), the ability of the model to capture time to message response (or ‘reciprocity’) 
may be more relevant than the ability of the model to capture the internal time structure of more com
plex closure mechanisms. On the other hand, the timing of closure mechanisms may be crucial in 
studies of interpersonal interaction within task-oriented teams (Leenders et al., 2016). Triadic con
figurations associated with structural balance are essential to understanding polarization and coord
ination in teams and hence deserve particular attention in that context (Lerner & Lomi, 2020a). 
Cyclic closure has been found to play an important stabilizing role in financial markets (Lomi & 
Bianchi, 2024). Given the relative recency of REMs, we do not yet have sufficient experience that 
may be distilled into a small set of rules of thumb or best practices to guide empirical research. As 
empirical experience accumulates, we believe that it will become possible to establish simple 
experience-based rules of thumb, or decision heuristics, to guide the empirical assessment of the 
GOF of REMs fitted to data produced by continuously observed social interaction processes.

Our work involves a number of explicit assumptions. For example, one event contributes only 
once to the computation of the relevant statistics in our models. While it is clearly possible to ex
periment with alternative assumptions, this assumption is not unreasonable as it avoids the need to 
develop additional assumptions on time dependence in—and stability of network effects. The way 
we choose to compute the inter-event time is non-unique in the sense that alternatives are conceiv
able. Consider reciprocity, for example. An obvious alternative to what we have proposed could 
have been to select the last i→ j event before j→ i and consider all the previous events as censored 
reciprocation spells.

Deserving mention in this closing section are the potential problems inherent in censoring, 
which—while of limited import in our empirical case—are generally difficult to rule out complete
ly in observational studies. Under conditions of non-random censoring, the problem is that the 
duration of the spells included in the sample (inter-event time in our case) and those in the popu
lation may differ significantly. While censoring patterns do not affect the partial likelihood func
tion directly (Efron, 1977), censoring may lead to a loss of efficiency in the estimates of the 
parameters in the Cox model (Qin & Shen, 2010). We think that this potential problem is unlikely 
to invalidate the conclusions of the study because we have no reason to believe that the length of 
the spells fully observed within the sample differs significantly from the spells initiated during the 
weeks immediately before the start of the sample observation period, or concluded in the weeks 
immediately following its end.

We introduced the auxiliary statistics only for sequences of exact time-stamped events. 
However, the approach we proposed may be adopted also when only the time-order information 
is available by defining auxiliary statistics that account for the order of events. For instance, for 
reciprocation, we propose to use the number of events originating from j since the first event 
from i to j instead of the time duration. Appendix S3, online supplementary material, provides ex
amples of auxiliary statistics for ordered events that may be specified when the structure of the 
data requires it. Similarly, the auxiliary statistics are computed at the network level since they 
are aggregated over all the actors. Building on Stadtfeld and Block (2017), analogous auxiliary sta
tistics can be defined at the actor level to reveal actor-level heterogeneity, and the presence of spe
cific actors exhibiting distinctive patterns of relational behaviour. This strategy would be 
particularly valuable for assessing the GOF of REMS specified according to general principles 
of actor-oriented modelling (Snijders, 2017; Stadtfeld et al., 2017). It might also be used to identify 
outliers, i.e. actors behaving significantly differently from others.

Our work suggests that REMs may assist in addressing explicitly issues of timing that are impli
cit in—but not absent from other network modelling frameworks. The internal time extension of 
network effects that we have discussed makes the interpretation of a single parameter associated 
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with a process with a time-dependent intensity hard to decipher. Consider reciprocity, for ex
ample. Qualitative evidence is available that the time distribution of symmetrizing events is highly 
skewed with a very long tail (Perry & Wolfe, 2013): the majority of reciprocated events happen 
quickly, but some may happen after considerable delay. When this is the case, it is unclear how 
and when reciprocation will affect the probability of observing the next event in a sequence. 
The additional complexity inherent in the possibility that different relational mechanisms may 
be regulated by different internal time clocks further limits our ability to provide a meaningful 
quantitative interpretation for the estimates of REMs.

A promising solution to this problem has been recently proposed by Juozaitienė and Wit (2022), 
who implement a semi-parametric specification of reciprocity and triadic effects, which are then 
modelled directly as time-varying splines. This representation affords a direct analysis of the tem
poral structure of the network effects of interest.

The approach we proposed in this paper is applicable, in principle, to the evaluation of the fit of 
any form of REM, provided that it is possible to simulate event sequences from the model that are 
sufficiently proximate to the observed series. Related to this last point, and to conclude, one add
itional set of issues deserving mention concerns the difficulties of simulating event sequences based 
on the semi-parametric proportional hazard specification commonly used in empirical research. 
The simulation-based approach we have proposed is likely to be considerably simplified by adopt
ing parametric models involving explicit and testable assumptions about the form of time depend
ence shaping the observed flow of relational events. We think that the development of parametric 
models will be an important part of the next step necessary to make REMs more powerful, flexible, 
and generally applicable to data with complex temporal dependencies produced by continuously 
observed social interaction.
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